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Abstract
In this paper, we present the numerical study of a model of the growth of
geometrical structures. Particles are randomly placed on a two-dimensional
(2D) square lattice and move as random walkers which annihilate when
encountering an occupied site. The model is studied for two cases. In
case A, we study the critical properties as a function of the initial particle
concentration, CI , after the annihilation of all particles. We have found a
critical behaviour characterized by the emergence of a percolative cluster for
C∗

I = 0.098 82 ± 2 × 10−4. In case B, we do a kinetic study of the systems
where the fraction of occupied sites, q, is a measure of time. For C∗

I we obtain
q∗ = 0.4679 ± 0.0005. This kinetic study is also done for CI = 0.2, 0.3,
0.45 and 0.5927. The critical exponent ν and the exponent ratios β

ν
and γ

ν

are measured for all cases. We compare the results obtained with the known
2D percolation values. The results obtained suggest the existence, for an
infinite system, of a critical line in the phase diagram CI − q (CI is the particle
concentration, q is the fraction of occupied sites), q ∼ (CI )

1−d ′
f /2 (where

d ′
f = 1.74), connecting the points (C∗

I = 0.098 28, q∗(C∗
I ) = 0.4679) and

(q∗
perc, q

∗(q∗
perc)) where q∗

perc = 0.5927 . . . is the 2D square lattice critical site
percolation parameter.

PACS numbers: 46.65.+g, 05.40.Fb, 05.10.−a, 64.60.Fr

1. Introduction

The modelling of the growth of structures has attracted the attention of many researchers.
Growth phenomena can be found in a variety of situations, such as growth of tumours and
bacterial colonies, colloidal aggregation, phase growth, gelation [1]. In spite of the complexity
of these systems, it has been found that important aspects of their behaviour are captured by
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phenomenological models. Some of these models are defined through stochastic rules and
geometrical constraints play an important role.

In this paper, we study a model related to kinetic gelation models that has been intensively
studied [2]. In the kinetic gelation models, monomers which occupy lattice sites are
characterized by their functionality, i.e. the maximum number of bonds that they can form
with their neighbours. Initially, there are no connections (bonds) between monomers. As time
goes by, bonds are formed by the motion of an initiator agent and, after a critical time has
elapsed, a macroscopic gel appears in the system. Bonds can only appear if an initiator agent
moves from one monomer to another neighbouring monomer that still has a ‘free’ bond to
form. Recently, reported studies have been consistent with kinetic gelation belonging to the
percolation universality class [3].

The model we propose is related to kinetic gelation models in the sense that particle
motion induces the growth of a percolating structure. A similar model has been considered
as a model of crack growth in solids with many initial defects [4]. However, in this work, the
authors considered a bond connectivity criteria, between clusters, as done in kinetic gelation,
whereas we consider a site connectivity criteria. Our model can be seen as a model of the
growth of disorder induced by the motion of many random walkers. The sites visited by
the walkers become ‘damaged’ and behave as annihilation sites. Consequently, the walkers
self-interact and interact with each other. These interaction and memory effects make the
model non-trivial. The walkers we consider can also be seen to belong to the general class
of active walkers [5] in the sense that they change the properties of the lattice where they
are moving. Our consideration of site connectivity criteria means physically we consider
that, when two neighbouring sites are ‘damaged’ (occupied), the bond between them is also
necessarily ‘damaged’.

2. The model

In our model, we consider a number, CI L
2, of particles that are randomly placed in the sites

of the square lattice of side L. These particles move to a randomly chosen neighbour of the site
they are occupying, with the restriction that they cannot immediately return to the previous
site; on the square lattice the particle has three possible directions of motion. The sites visited
by the particles become occupied. The fraction of occupied sites, q, is a measure of the time
elapsed. The particles annihilate and disappear from the lattice when they visit occupied
sites. Two neighbouring occupied sites are considered to belong to the same cluster. This is a
connectivity criteria different from that used in kinetic gelation models where sites belong to
the same cluster if there is a path of bonds linking them. Our model is not characterized by the
functionality of monomers as in kinetic gelation. Every site of the lattice can be considered
a monomer that is, in principle, able to make bonds up to the maximum number allowed by
the geometry of the lattice, i.e. four bonds. However, the number of sites that have the four
bonds occupied is small since this situation occurs only if two particles meet in a site already
occupied.

With the bond connectivity criteria, our model can be related to a crack propagation
model proposed by Nishiuma and co-workers [4]. In this case, the bond occupation is driven
by the random motion of walkers, which try to avoid intersection with their own trajectories,
following a type of random walk motion known as kinetic growth walk [6]. However, the
formation of an infinite cluster (gel) in these kind of models [4], with the bond connectivity
criteria, is not observed and the models are not interesting as gelation models. In our model,
the walkers are of a self-avoiding type generated by sampling non-reversing random walks
that terminate when a blind move leads the walker to a previously visited site [1, 6].
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3. Results for critical parameters and critical exponents

We have studied systems of sides between 64, 128, 256, 512, 1024 and 2048. For systems
with L < 2048 we considered at least 2000 and 1000 samples for systems with L = 2048.
If the concentration of particles, CI , is small all particles annihilate before an infinite cluster
is found in the system. So, we have divided our study into two cases: in case A, we have
measured the critical concentration C∗

I and we have studied the critical behaviour as a function
of CI , letting the system evolve until all the particles disappear; in case B, we have studied
the time evolution of the system and the corresponding critical behaviour as a function of the
fraction of occupied sites, q, for different initial concentrations, CI � C∗

I .
We have measured the fraction of percolative samples, R, the fraction of sites in the infinite

cluster, P∞, and the mean cluster size (susceptibility), χ . We have considered a sample as
percolative when there is a cluster that spans the lattice in one of the two directions. From
the intersection of the R curves measured for systems of different sizes, L, we have estimated
the critical parameter values for the infinite system. Since R follows the finite-size scaling
law, R ∼ �

(
(x − x∗)L1/ν

)
, with a scaling function �(y), its derivative with respect to the

parameters CI (case A) or q (case B) is expected to have a finite-size behaviour,
dR

dx
∼ L1/ν�′ ((x − x∗)L1/ν

)
(1)

where x represents either CI or q. Having estimated the critical parameter x∗, we have obtained
the critical exponent ν from(

dR

dx

)
x∗

∼ L1/ν . (2)

The system size behaviour of P∞ at criticality

P∞ ∼ L−β/ν (3)

was used to make estimations of the exponent β

ν
. The corresponding finite-size behaviour of

the mean cluster size at criticality

χ ∼ Lγ/ν (4)

gives the exponent γ

ν
[6].

3.1. Case A

The intersection values for the various R(CI , L) curves are presented in table 1 and lead us
to the critical value of 0.098 82 ± 0.0002. Starting with this critical value and according to
equation (2) we obtain ν = 1.41 ± 0.02 (see figure 1). From the log–log plots of P∞ versus L
(figure 2) and χ versus L (figure 3), using equations (3) and (4), we obtain β

ν
=

0.1031 ± 4 × 10−4 and γ

ν
= 1.76 ± 0.01. These results are listed in table 2.

3.2. Case B

For this case we used the following initial particle concentrations: C∗
I , 0.2, 0.3, 0.45 and

0.5927 (close to the critical fraction of occupied site values in a 2D square lattice percolation
[6]). The critical fraction of occupied sites, for each CI , denoted by q∗(CI ), is determined
from the mean values of the intersection of the R(q,L) curves (see table 1) for different system
sizes. The measured critical exponents are presented in table 3. Figure 1 shows the log–log
plot corresponding to equation (2) that allows us to measure ν. Figures 2 and 3 show the plots
corresponding to P∞ and χ that allow us to obtain β

ν
and γ

ν
according to equations (3) and

(4), respectively.
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Figure 1. ( dR
dx

)x=x∗ versus L for cases A and B in log–log scale.

Table 1. Intersection points, x∗, of R(x,L) curves for all system sizes studied, L, with R(x,L′)
curves for the two largest systems, L′. In case A x is CI and in case B x is q.

Case L′/L 64 128 256 512 1024 1536

A 1024 0.098 90 0.098 87 0.099 00 0.099 02
2048 0.098 82 0.098 79 0.098 81 0.098 79 0.098 68

B, CI = C∗
I 1765 0.4678 0.4677 0.4678 0.4678 0.4679 0.4679

2048 0.4674 0.4673 0.4673 0.4672 0.4671 0.4675

B, CI = 0.2 1536 0.5181 0.5181 0.5182 0.5181
2048 0.5179 0.5177 0.5175 0.5174 0.5169

B, CI = 0.3 1024 0.5425 0.5421 0.5421
1536 0.5427 0.5421 0.5422 0.5436

B, CI = 0.45 1536 0.5708 0.5708 0.5809 0.5712 0.5708
2048 0.5702 0.5702 0.5702 0.5702 0.5697

4. Phase diagram

Since at t = 0 we have q = CI , we obviously have q > CI at any time. Furthermore, we
can define a maximum value of q for each CI , qmax(CI ), representing the maximum fraction
of occupied sites that we can obtain after the annihilation of all the particles. Therefore, in
the CI –q plane, we can define a forbidden region and an accessible region delimited by the
straight line q = CI and by the curve q = qmax(CI ) obtained from numerical simulations.
The accessible region is divided into two regions separated by a line of critical points. This
line connects, in the CI –q plane, the point (C∗

I , q∗(C∗
I )) with the point (q∗

per , q
∗(q∗

per)) where
q∗

per = q∗(q∗
per) = 0.5927 . . . . For CI = q∗

per , we already have at t = 0 a percolative cluster
and the subsequent site occupation leads us away from criticality. We now present an argument
for the functional dependence q∗(CI ): the geometrical phase transition for a value CI occurs
at some q∗ such that the mean linear size of the clusters originated by the motion of a given
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Figure 2. P∞ versus L for cases A and B in log–log scale.
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Figure 3. χ versus L for cases A and B in log–log scale.

particle is of the same order as the mean distance between them. The mean number of sites
visited by one particle is of the order of q

CI
. Supposing that the cluster formed by the random

walk of each particle is a fractal with fractal dimension, d ′
f , then the cluster mean linear size

is of the order of
(

q

CI

)1/d ′
f . Since the mean distance between clusters is (CI )

−1/2, we have an

infinite cluster when
(

q

CI

)1/d ′
f = (CI )

−1/2, i.e.

q∗ ∼ (CI )
1−d ′

f /2. (5)
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Figure 4. Phase diagram in the CI–q plane.

Table 2. Critical particle concentration and measured critical exponents for case A.

C∗
I ν

β
ν

γ
ν

0.098 82 ± 2 × 10−4 1.41 ± 0.02 0.1031 ± 4 × 10−4 1.76 ± 0.01

Table 3. Critical fraction of occupied sites and critical exponents for case B with CI = C∗
I ,

0.2, 0.3, 0.45 and 0.5927.

CI q∗ ν
β
ν

γ
ν

C∗
I 0.4679 ± 5 × 10−4 1.42 ± 0.02 0.110 ± 4 × 10−3 1.74 ± 0.02

0.2 0.5179 ± 3 × 10−4 1.40 ± 0.02 0.100 ± 2 × 10−3 1.76 ± 0.02
0.3 0.5431 ± 7 × 10−4 1.41 ± 0.02 0.101 ± 3 × 10−3 1.76 ± 0.02
0.45 0.5705 ± 3 × 10−4 1.41 ± 0.02 0.100 ± 3 × 10−3 1.77 ± 0.02
0.5927 0.5927(assumed) 1.32 ± 0.02 0.101 ± 3 × 10−3 1.76 ± 0.02

With the values obtained for q∗(CI ) and with the value corresponding to the critical parameter
of 2D site percolation, we have determined for d ′

f the value 1.74. The CI –q phase diagram is
presented in figure 4.

5. Discussion

We have obtained values for ν near 1.4, from both cases A and B, for all initial particle
concentrations, except for the case with CI = q∗ = 0.5927, the 2D site percolation critical
parameter. The value of 1.4 is consistently larger than the 2D percolation value known to
be 4/3. On the other hand, for CI = q∗

per the value obtained for ν is rather close to this
percolation value. The measured ratios of the exponents, β/ν and γ /ν, are always close to
the 2D percolation ratios 5

48 = 0.104 . . . and 43
24 = 1.79 . . . [6]. The errors estimated in the

determination of ν from the finite-size behaviour of dR
dx

could be underestimated and it is
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possible that the consideration of larger systems, for which finite-size corrections would be
smaller, would lead us to values of ν consistent with percolation. So we prefer to consider the
ν values reported as effective exponents. However, for CI = q∗

perc, the results obtained for ν,
assuming the known critical value 0.5927 . . . , lead us to a ν value very close to the percolation
value in spite of the fact that the system sizes of the systems studied were the same as in the
previous cases.

The behaviour of the line of critical points in the plane CI –q was predicted from an
approximate argument. The value obtained for d ′

f was smaller than the value of the infinite

cluster fractal dimension of 2D percolation known to be 91
48 � 1.896 [7]. This difference could

be attributed to the fact that the cluster structures, originating from the motion of a particular
particle, have an intrinsic fractal dimension different from the infinite cluster formed by the
clustering of these clusters. Actually, the walks originating from each particle can be seen
as self-avoiding walks generated by simple random walks that have a survival probability
decaying exponentially with the number of steps (visited sites). For long self-avoiding walks,
it is known that df = 4/3 [1], which is smaller than the measured value of 1.74. However,
in our model the walks are not long enough for the asymptotic properties to be seen and so
a large effective fractal dimension is expected. Finally, we mention that the ratio β/ν which
we obtain is always near the 2D percolation value which means that the infinite percolative
cluster in our model has the same fractal dimensions as 2D percolation.

6. Conclusions

In this paper, we have presented the numerical study of a new growth model of structures,
related to kinetic gelation models. In our model we use site connectivity criteria instead of
the bond connectivity used in gelation models. Furthermore, the mechanism for the growth
of structures is different than that considered in gelation models; the motion of the particles
(the initiator agents in gelation) are not determined by a given functionality of monomers
in the system and they annihilate when they visit occupied sites. Our model, with the bond
connectivity criteria, does not show any critical behaviour whatever the initial concentration
of particles we start with [4].

We have made a static study (case A) where we wait for all particles to annihilate. In this
case, there is a critical initial concentration of particles. The kinetic study, case B, was done for
initial particle concentration larger than the critical concentration determined in case A. In this
case we measure the fraction of occupied sites and study the critical behaviour arising when
a percolative infinite cluster appears in the system. We were able to characterize the phase
diagram of the model in the CI –q plane where there is a line of critical points behaving like
q∗ ∼ (CI )

1−d ′
f /2. The fractal dimension d ′

f measured is different from the fractal dimension
of the infinite percolative cluster.

The effective critical exponent ν measured was always larger than the 2D percolation
value, close to 1.4 for all critical points studied except for the critical point corresponding to
CI = q∗

perc where the result for 2D percolation was found. The ratios of exponents β/ν and
γ /ν are, in all cases, consistent with the 2D percolation exponents.

Finally, we mention that our model could be related to reaction-diffusion models that
can be studied by field-theoretic techniques [8, 9]. In particular, Cardy and Grassberger [9]
have shown that a model of random walkers with poisoning of visited sites and offspring birth
belongs to the percolation universality class. In our model, offspring birth processes are not
included and it is not possible to build an infinite percolative cluster starting with a
single particle as is possible in epidemic models [1] such as those studied by Cardy and
Grassberger [9].
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